Exercise 93

A bacteria culture contains 200 cells initially and grows at a rate proportional to its size. After half an hour the population has increased to 360 cells.
(a) Find the number of bacteria after t hours.
(b) Find the number of bacteria after 4 hours.
(c) Find the rate of growth after 4 hours.
(d) When will the population reach 10,000 ?

Solution

Part (a)

Start with the assumption that the rate of population growth is proportional to the population.

$$
\frac{d P}{d t} \propto P
$$

Change this proportionality to an equation by introducing a constant.

$$
\frac{d P}{d t}=k P
$$

Divide both sides by P.

$$
\frac{1}{P} \frac{d P}{d t}=k
$$

Rewrite the left side as a derivative of a logarithm by using the chain rule.

$$
\frac{d}{d t} \ln P=k
$$

The function you take a derivative of to get k is $k t+C$, where C is any constant.

$$
\ln P=k t+C
$$

Exponentiate both sides to solve for P.

$$
\begin{aligned}
& e^{\ln P}=e^{k t+C} \\
& P(t)=e^{C} e^{k t}
\end{aligned}
$$

Use a new constant P_{0} for e^{C}.

$$
P(t)=P_{0} e^{k t}
$$

Use the fact that the population is 200 initially to determine P_{0}.

$$
P(0)=P_{0} e^{0}=200 \quad \rightarrow \quad P_{0}=200
$$

As a result,

$$
P(t)=200 e^{k t}
$$

Use the fact that the population is 360 after 0.5 hours to determine k.

$$
\begin{aligned}
P(0.5) & =200 e^{k(0.5)} \\
360 & =200 e^{0.5 k} \\
\frac{9}{5} & =e^{0.5 k} \\
\ln \frac{9}{5} & =\ln e^{0.5 k} \\
\ln \frac{9}{5} & =(0.5 k) \ln e \\
k & =2 \ln \frac{9}{5}
\end{aligned}
$$

Therefore, after t hours, the bacteria population is

$$
\begin{aligned}
P(t) & =200 e^{\left(2 \ln \frac{9}{5}\right) t} \\
& =200 e^{\ln \left(\frac{9}{5}\right)^{2 t}} \\
& =200\left(\frac{9}{5}\right)^{2 t} .
\end{aligned}
$$

Part (b)

Plug in $t=4$ to get the bacteria population after 4 hours.

$$
P(4)=200\left(\frac{9}{5}\right)^{2(4)} \approx 22040 \text { bacteria }
$$

Part (c)

The rate of population growth after 4 hours is

$$
\left.\frac{d P}{d t}\right|_{t=4}=k P(4)=\left(2 \ln \frac{9}{5}\right)\left[200\left(\frac{9}{5}\right)^{2(4)}\right] \approx 25910 \text { bacteria/hour. }
$$

Part (d)

To find when the population will be 10,000 , set $P(t)=10000$ and solve the equation for t.

$$
\begin{gathered}
P(t)=10000 \\
200\left(\frac{9}{5}\right)^{2 t}=10000 \\
\left(\frac{9}{5}\right)^{2 t}=50 \\
\ln \left(\frac{9}{5}\right)^{2 t}=\ln 50 \\
2 t \ln \left(\frac{9}{5}\right)=\ln 50 \\
2 t=\frac{\ln 50}{\ln \left(\frac{9}{5}\right)} \\
t=\frac{1}{2}\left(\frac{\ln 50}{\ln \frac{9}{5}}\right) \\
t \approx 3.33 \text { hours }
\end{gathered}
$$

